All Samples

Ordination

2018

PCoA

Lake
phylosmith::pcoa_phyloseq(phylosmith::taxa_filter(lake_po, treatment = "Year", subset = "2018"), "Location", circle = FALSE)

Week
phylosmith::pcoa_phyloseq(phylosmith::taxa_filter(lake_po, treatment = "Year", subset = "2018"), "Week", circle = FALSE)

Risk Level
phylosmith::pcoa_phyloseq(phylosmith::taxa_filter(lake_po, treatment = "Year", subset = "2018"), "Risk", circle = FALSE)

NMDS

Lake
nmds <- phylosmith::nmds_phyloseq(phylosmith::taxa_filter(lake_po, treatment = "Year", subset = "2018"), "Location", circle = FALSE)
## Run 0 stress 0.1393965 
## Run 1 stress 0.1398331 
## ... Procrustes: rmse 0.02555364  max resid 0.1112875 
## Run 2 stress 0.1403284 
## Run 3 stress 0.1392105 
## ... New best solution
## ... Procrustes: rmse 0.02682761  max resid 0.1101018 
## Run 4 stress 0.140865 
## Run 5 stress 0.1416363 
## Run 6 stress 0.1418019 
## Run 7 stress 0.1405055 
## Run 8 stress 0.1411806 
## Run 9 stress 0.1411152 
## Run 10 stress 0.1404088 
## Run 11 stress 0.1400349 
## Run 12 stress 0.1390551 
## ... New best solution
## ... Procrustes: rmse 0.003772077  max resid 0.04741309 
## Run 13 stress 0.143058 
## Run 14 stress 0.1411499 
## Run 15 stress 0.1398941 
## Run 16 stress 0.1407491 
## Run 17 stress 0.1410781 
## Run 18 stress 0.1399551 
## Run 19 stress 0.1417259 
## Run 20 stress 0.1407233 
## Run 21 stress 0.1407663 
## Run 22 stress 0.1392084 
## ... Procrustes: rmse 0.003796097  max resid 0.04675711 
## Run 23 stress 0.1398254 
## Run 24 stress 0.139484 
## ... Procrustes: rmse 0.005052784  max resid 0.08109976 
## Run 25 stress 0.1417852 
## Run 26 stress 0.1414197 
## Run 27 stress 0.1389638 
## ... New best solution
## ... Procrustes: rmse 0.002358033  max resid 0.04621079 
## Run 28 stress 0.1413823 
## Run 29 stress 0.1424079 
## Run 30 stress 0.1417739 
## Run 31 stress 0.1404716 
## Run 32 stress 0.1426406 
## Run 33 stress 0.1407669 
## Run 34 stress 0.1414854 
## Run 35 stress 0.1422808 
## Run 36 stress 0.1389933 
## ... Procrustes: rmse 0.003399188  max resid 0.04719818 
## Run 37 stress 0.1397432 
## Run 38 stress 0.1412152 
## Run 39 stress 0.1392059 
## ... Procrustes: rmse 0.004232367  max resid 0.04654028 
## Run 40 stress 0.1399177 
## Run 41 stress 0.140658 
## Run 42 stress 0.1407634 
## Run 43 stress 0.1405988 
## Run 44 stress 0.1396391 
## Run 45 stress 0.1413392 
## Run 46 stress 0.1429663 
## Run 47 stress 0.1414466 
## Run 48 stress 0.1410592 
## Run 49 stress 0.1416487 
## Run 50 stress 0.1395546 
## Run 51 stress 0.140663 
## Run 52 stress 0.1401136 
## Run 53 stress 0.1390161 
## ... Procrustes: rmse 0.003154651  max resid 0.04580177 
## Run 54 stress 0.1417163 
## Run 55 stress 0.1407358 
## Run 56 stress 0.1412667 
## Run 57 stress 0.1395779 
## Run 58 stress 0.1416698 
## Run 59 stress 0.1399921 
## Run 60 stress 0.1404287 
## Run 61 stress 0.141743 
## Run 62 stress 0.1412369 
## Run 63 stress 0.1391396 
## ... Procrustes: rmse 0.002789885  max resid 0.03833028 
## Run 64 stress 0.1426773 
## Run 65 stress 0.1422948 
## Run 66 stress 0.1401116 
## Run 67 stress 0.1414727 
## Run 68 stress 0.1391563 
## ... Procrustes: rmse 0.002746822  max resid 0.03822767 
## Run 69 stress 0.138984 
## ... Procrustes: rmse 0.002825539  max resid 0.04690727 
## Run 70 stress 0.1400767 
## Run 71 stress 0.1423444 
## Run 72 stress 0.1413379 
## Run 73 stress 0.1418484 
## Run 74 stress 0.1427368 
## Run 75 stress 0.1404386 
## Run 76 stress 0.1393142 
## ... Procrustes: rmse 0.003939902  max resid 0.04555354 
## Run 77 stress 0.1402262 
## Run 78 stress 0.1399555 
## Run 79 stress 0.1391517 
## ... Procrustes: rmse 0.003841315  max resid 0.04706029 
## Run 80 stress 0.1404561 
## Run 81 stress 0.1404325 
## Run 82 stress 0.1401342 
## Run 83 stress 0.141134 
## Run 84 stress 0.1411798 
## Run 85 stress 0.1412702 
## Run 86 stress 0.1390149 
## ... Procrustes: rmse 0.003544971  max resid 0.04666878 
## Run 87 stress 0.1415003 
## Run 88 stress 0.1400512 
## Run 89 stress 0.1389848 
## ... Procrustes: rmse 0.003603875  max resid 0.04741237 
## Run 90 stress 0.1399661 
## Run 91 stress 0.1416963 
## Run 92 stress 0.1412914 
## Run 93 stress 0.1402101 
## Run 94 stress 0.1416274 
## Run 95 stress 0.1419915 
## Run 96 stress 0.1414501 
## Run 97 stress 0.1411355 
## Run 98 stress 0.1401239 
## Run 99 stress 0.1402618 
## Run 100 stress 0.1389901 
## ... Procrustes: rmse 0.003805658  max resid 0.04755983 
## *** No convergence -- monoMDS stopping criteria:
##     44: no. of iterations >= maxit
##     45: stress ratio > sratmax
##     11: scale factor of the gradient < sfgrmin
nmds

Week
nmds <- phylosmith::nmds_phyloseq(phylosmith::taxa_filter(lake_po, treatment = "Year", subset = "2018"), "Week", circle = FALSE)
## Run 0 stress 0.1393965 
## Run 1 stress 0.1412539 
## Run 2 stress 0.1428037 
## Run 3 stress 0.1391939 
## ... New best solution
## ... Procrustes: rmse 0.02589017  max resid 0.1093293 
## Run 4 stress 0.1402996 
## Run 5 stress 0.1404912 
## Run 6 stress 0.1403653 
## Run 7 stress 0.140482 
## Run 8 stress 0.1449001 
## Run 9 stress 0.1412655 
## Run 10 stress 0.1390284 
## ... New best solution
## ... Procrustes: rmse 0.00360399  max resid 0.04217317 
## Run 11 stress 0.1410581 
## Run 12 stress 0.1397898 
## Run 13 stress 0.1411736 
## Run 14 stress 0.1431087 
## Run 15 stress 0.1415128 
## Run 16 stress 0.1406669 
## Run 17 stress 0.1413385 
## Run 18 stress 0.1397246 
## Run 19 stress 0.1416533 
## Run 20 stress 0.1419466 
## Run 21 stress 0.1409147 
## Run 22 stress 0.1395622 
## Run 23 stress 0.1405362 
## Run 24 stress 0.1412612 
## Run 25 stress 0.1418111 
## Run 26 stress 0.1406755 
## Run 27 stress 0.1403144 
## Run 28 stress 0.1422398 
## Run 29 stress 0.1390845 
## ... Procrustes: rmse 0.002315223  max resid 0.0331329 
## Run 30 stress 0.1401978 
## Run 31 stress 0.141716 
## Run 32 stress 0.1403169 
## Run 33 stress 0.1404921 
## Run 34 stress 0.1406158 
## Run 35 stress 0.1406294 
## Run 36 stress 0.1399387 
## Run 37 stress 0.141167 
## Run 38 stress 0.1400811 
## Run 39 stress 0.140272 
## Run 40 stress 0.1414621 
## Run 41 stress 0.1403766 
## Run 42 stress 0.1410541 
## Run 43 stress 0.139439 
## ... Procrustes: rmse 0.02715388  max resid 0.114405 
## Run 44 stress 0.139182 
## ... Procrustes: rmse 0.003524055  max resid 0.04662843 
## Run 45 stress 0.1410598 
## Run 46 stress 0.1403799 
## Run 47 stress 0.142085 
## Run 48 stress 0.1402659 
## Run 49 stress 0.1402771 
## Run 50 stress 0.1430482 
## Run 51 stress 0.1409751 
## Run 52 stress 0.1407488 
## Run 53 stress 0.141035 
## Run 54 stress 0.140003 
## Run 55 stress 0.1403445 
## Run 56 stress 0.1423483 
## Run 57 stress 0.139652 
## Run 58 stress 0.1409707 
## Run 59 stress 0.14157 
## Run 60 stress 0.1410489 
## Run 61 stress 0.1401712 
## Run 62 stress 0.1390178 
## ... New best solution
## ... Procrustes: rmse 0.003515899  max resid 0.04171313 
## Run 63 stress 0.1392385 
## ... Procrustes: rmse 0.003638198  max resid 0.04810964 
## Run 64 stress 0.1423122 
## Run 65 stress 0.141864 
## Run 66 stress 0.1417376 
## Run 67 stress 0.1409601 
## Run 68 stress 0.1416686 
## Run 69 stress 0.1395591 
## Run 70 stress 0.140113 
## Run 71 stress 0.1397087 
## Run 72 stress 0.1409031 
## Run 73 stress 0.1420326 
## Run 74 stress 0.1412656 
## Run 75 stress 0.1403459 
## Run 76 stress 0.1413774 
## Run 77 stress 0.14062 
## Run 78 stress 0.1409174 
## Run 79 stress 0.1396286 
## Run 80 stress 0.1416564 
## Run 81 stress 0.1425551 
## Run 82 stress 0.1414633 
## Run 83 stress 0.1422059 
## Run 84 stress 0.1406375 
## Run 85 stress 0.1449562 
## Run 86 stress 0.1411502 
## Run 87 stress 0.1424762 
## Run 88 stress 0.1390722 
## ... Procrustes: rmse 0.002901087  max resid 0.03901993 
## Run 89 stress 0.1408394 
## Run 90 stress 0.1416997 
## Run 91 stress 0.1396296 
## Run 92 stress 0.1391972 
## ... Procrustes: rmse 0.003749865  max resid 0.04196664 
## Run 93 stress 0.1402056 
## Run 94 stress 0.1410118 
## Run 95 stress 0.1411064 
## Run 96 stress 0.1401174 
## Run 97 stress 0.1412566 
## Run 98 stress 0.1408048 
## Run 99 stress 0.1402223 
## Run 100 stress 0.1416624 
## *** No convergence -- monoMDS stopping criteria:
##     45: no. of iterations >= maxit
##     45: stress ratio > sratmax
##     10: scale factor of the gradient < sfgrmin
nmds

Risk Level
nmds <- phylosmith::nmds_phyloseq(phylosmith::taxa_filter(lake_po, treatment = "Year", subset = "2018"), "Risk", circle = FALSE)
## Run 0 stress 0.1393965 
## Run 1 stress 0.1409579 
## Run 2 stress 0.1418586 
## Run 3 stress 0.1413652 
## Run 4 stress 0.1411033 
## Run 5 stress 0.1416194 
## Run 6 stress 0.1396993 
## ... Procrustes: rmse 0.02611647  max resid 0.1108218 
## Run 7 stress 0.1395927 
## ... Procrustes: rmse 0.02680178  max resid 0.1104663 
## Run 8 stress 0.1422965 
## Run 9 stress 0.1389635 
## ... New best solution
## ... Procrustes: rmse 0.02691546  max resid 0.110028 
## Run 10 stress 0.1412937 
## Run 11 stress 0.1433159 
## Run 12 stress 0.1405404 
## Run 13 stress 0.14197 
## Run 14 stress 0.1418118 
## Run 15 stress 0.1397066 
## Run 16 stress 0.1401611 
## Run 17 stress 0.1391573 
## ... Procrustes: rmse 0.002702578  max resid 0.04120391 
## Run 18 stress 0.1408895 
## Run 19 stress 0.1415992 
## Run 20 stress 0.1394116 
## ... Procrustes: rmse 0.02730036  max resid 0.1140482 
## Run 21 stress 0.1433461 
## Run 22 stress 0.1395775 
## Run 23 stress 0.1408217 
## Run 24 stress 0.1404055 
## Run 25 stress 0.1413254 
## Run 26 stress 0.140823 
## Run 27 stress 0.1415486 
## Run 28 stress 0.1394641 
## Run 29 stress 0.1413315 
## Run 30 stress 0.1423192 
## Run 31 stress 0.1414953 
## Run 32 stress 0.1389783 
## ... Procrustes: rmse 0.003168496  max resid 0.04707657 
## Run 33 stress 0.1413568 
## Run 34 stress 0.1411921 
## Run 35 stress 0.1401879 
## Run 36 stress 0.1413102 
## Run 37 stress 0.1397076 
## Run 38 stress 0.1405219 
## Run 39 stress 0.1404414 
## Run 40 stress 0.1406587 
## Run 41 stress 0.1411308 
## Run 42 stress 0.1403226 
## Run 43 stress 0.1397734 
## Run 44 stress 0.1429863 
## Run 45 stress 0.1389511 
## ... New best solution
## ... Procrustes: rmse 0.001130155  max resid 0.02074161 
## Run 46 stress 0.1429056 
## Run 47 stress 0.1399205 
## Run 48 stress 0.1415338 
## Run 49 stress 0.1399506 
## Run 50 stress 0.1395556 
## Run 51 stress 0.1413409 
## Run 52 stress 0.1426736 
## Run 53 stress 0.1403954 
## Run 54 stress 0.1408219 
## Run 55 stress 0.1409778 
## Run 56 stress 0.1407667 
## Run 57 stress 0.14231 
## Run 58 stress 0.1447889 
## Run 59 stress 0.1420604 
## Run 60 stress 0.1394418 
## ... Procrustes: rmse 0.02693885  max resid 0.110719 
## Run 61 stress 0.1401047 
## Run 62 stress 0.1463106 
## Run 63 stress 0.1402382 
## Run 64 stress 0.1412588 
## Run 65 stress 0.14135 
## Run 66 stress 0.1410125 
## Run 67 stress 0.1411918 
## Run 68 stress 0.1426594 
## Run 69 stress 0.1398943 
## Run 70 stress 0.1427716 
## Run 71 stress 0.1396502 
## Run 72 stress 0.1411865 
## Run 73 stress 0.141298 
## Run 74 stress 0.1424 
## Run 75 stress 0.1390385 
## ... Procrustes: rmse 0.002421445  max resid 0.04169224 
## Run 76 stress 0.1414961 
## Run 77 stress 0.1399163 
## Run 78 stress 0.1414823 
## Run 79 stress 0.1409518 
## Run 80 stress 0.1414446 
## Run 81 stress 0.1414853 
## Run 82 stress 0.1391749 
## ... Procrustes: rmse 0.003230535  max resid 0.04639821 
## Run 83 stress 0.1403547 
## Run 84 stress 0.1397744 
## Run 85 stress 0.1394233 
## ... Procrustes: rmse 0.005765268  max resid 0.0804822 
## Run 86 stress 0.1415197 
## Run 87 stress 0.1416582 
## Run 88 stress 0.1405326 
## Run 89 stress 0.1403551 
## Run 90 stress 0.1401688 
## Run 91 stress 0.1428634 
## Run 92 stress 0.1414205 
## Run 93 stress 0.1411217 
## Run 94 stress 0.1431789 
## Run 95 stress 0.1404408 
## Run 96 stress 0.1404017 
## Run 97 stress 0.1421092 
## Run 98 stress 0.1410539 
## Run 99 stress 0.1407447 
## Run 100 stress 0.1416995 
## *** No convergence -- monoMDS stopping criteria:
##     45: no. of iterations >= maxit
##     39: stress ratio > sratmax
##     16: scale factor of the gradient < sfgrmin
nmds

tSNE

Lake
phylosmith::tsne_phyloseq(phylosmith::taxa_filter(lake_po, treatment = "Year", subset = "2018"), "Location", circle = FALSE)

Week
phylosmith::tsne_phyloseq(phylosmith::taxa_filter(lake_po, treatment = "Year", subset = "2018"), "Week", circle = FALSE)

Risk Level
phylosmith::tsne_phyloseq(phylosmith::taxa_filter(lake_po, treatment = "Year", subset = "2018"), "Risk", circle = FALSE)

2019

PCoA

Lake
phylosmith::pcoa_phyloseq(phylosmith::taxa_filter(lake_po, treatment = "Year", subset = "2019"), "Location", circle = FALSE)

Week
phylosmith::pcoa_phyloseq(phylosmith::taxa_filter(lake_po, treatment = "Year", subset = "2019"), "Week", circle = FALSE)

Risk Level
phylosmith::pcoa_phyloseq(phylosmith::taxa_filter(lake_po, treatment = "Year", subset = "2019"), "Risk", circle = FALSE)

NMDS

Lake
nmds <- phylosmith::nmds_phyloseq(phylosmith::taxa_filter(lake_po, treatment = "Year", subset = "2019"), "Location", circle = FALSE)
## Run 0 stress 0.1457842 
## Run 1 stress 0.1461617 
## ... Procrustes: rmse 0.01565422  max resid 0.1250316 
## Run 2 stress 0.1462037 
## ... Procrustes: rmse 0.01170614  max resid 0.1263403 
## Run 3 stress 0.1467018 
## Run 4 stress 0.1455619 
## ... New best solution
## ... Procrustes: rmse 0.009196458  max resid 0.061973 
## Run 5 stress 0.14664 
## Run 6 stress 0.1471566 
## Run 7 stress 0.1481715 
## Run 8 stress 0.1510684 
## Run 9 stress 0.1518978 
## Run 10 stress 0.1460181 
## ... Procrustes: rmse 0.006143339  max resid 0.06623614 
## Run 11 stress 0.1476825 
## Run 12 stress 0.1457225 
## ... Procrustes: rmse 0.005578557  max resid 0.06001821 
## Run 13 stress 0.1502491 
## Run 14 stress 0.1476673 
## Run 15 stress 0.1457005 
## ... Procrustes: rmse 0.006307197  max resid 0.06132864 
## Run 16 stress 0.1481487 
## Run 17 stress 0.1479196 
## Run 18 stress 0.1470541 
## Run 19 stress 0.1462988 
## Run 20 stress 0.1462329 
## Run 21 stress 0.146426 
## Run 22 stress 0.1466154 
## Run 23 stress 0.1482679 
## Run 24 stress 0.1476944 
## Run 25 stress 0.145796 
## ... Procrustes: rmse 0.01037361  max resid 0.1365985 
## Run 26 stress 0.1481672 
## Run 27 stress 0.1459201 
## ... Procrustes: rmse 0.008675066  max resid 0.1367565 
## Run 28 stress 0.14777 
## Run 29 stress 0.1458241 
## ... Procrustes: rmse 0.006064063  max resid 0.07073455 
## Run 30 stress 0.1465732 
## Run 31 stress 0.1466149 
## Run 32 stress 0.1490068 
## Run 33 stress 0.1468339 
## Run 34 stress 0.1471709 
## Run 35 stress 0.1481523 
## Run 36 stress 0.1480152 
## Run 37 stress 0.149766 
## Run 38 stress 0.1458428 
## ... Procrustes: rmse 0.008357932  max resid 0.137114 
## Run 39 stress 0.1475249 
## Run 40 stress 0.1454712 
## ... New best solution
## ... Procrustes: rmse 0.006926771  max resid 0.05762885 
## Run 41 stress 0.1460384 
## Run 42 stress 0.1489276 
## Run 43 stress 0.1460944 
## Run 44 stress 0.1466659 
## Run 45 stress 0.1515535 
## Run 46 stress 0.1465335 
## Run 47 stress 0.1462284 
## Run 48 stress 0.1465754 
## Run 49 stress 0.1468243 
## Run 50 stress 0.1492766 
## Run 51 stress 0.1484778 
## Run 52 stress 0.1464365 
## Run 53 stress 0.145751 
## ... Procrustes: rmse 0.009965467  max resid 0.1364666 
## Run 54 stress 0.1455946 
## ... Procrustes: rmse 0.00737787  max resid 0.05640604 
## Run 55 stress 0.1464498 
## Run 56 stress 0.14637 
## Run 57 stress 0.1478515 
## Run 58 stress 0.149598 
## Run 59 stress 0.1457309 
## ... Procrustes: rmse 0.01137967  max resid 0.1356616 
## Run 60 stress 0.1466199 
## Run 61 stress 0.1473134 
## Run 62 stress 0.1460738 
## Run 63 stress 0.1472969 
## Run 64 stress 0.1456336 
## ... Procrustes: rmse 0.007940622  max resid 0.06738304 
## Run 65 stress 0.1456557 
## ... Procrustes: rmse 0.006106216  max resid 0.05700463 
## Run 66 stress 0.146253 
## Run 67 stress 0.1456739 
## ... Procrustes: rmse 0.006733004  max resid 0.05774925 
## Run 68 stress 0.1452891 
## ... New best solution
## ... Procrustes: rmse 0.007284138  max resid 0.05541177 
## Run 69 stress 0.1495298 
## Run 70 stress 0.1459433 
## Run 71 stress 0.1502934 
## Run 72 stress 0.1467741 
## Run 73 stress 0.1468307 
## Run 74 stress 0.1485147 
## Run 75 stress 0.1461834 
## Run 76 stress 0.1457116 
## ... Procrustes: rmse 0.009083305  max resid 0.06203706 
## Run 77 stress 0.1462174 
## Run 78 stress 0.1475104 
## Run 79 stress 0.147767 
## Run 80 stress 0.1472912 
## Run 81 stress 0.1461419 
## Run 82 stress 0.1464884 
## Run 83 stress 0.1506179 
## Run 84 stress 0.1461845 
## Run 85 stress 0.1467694 
## Run 86 stress 0.1462038 
## Run 87 stress 0.1516176 
## Run 88 stress 0.1466338 
## Run 89 stress 0.1474076 
## Run 90 stress 0.1462083 
## Run 91 stress 0.1518471 
## Run 92 stress 0.1460934 
## Run 93 stress 0.1464494 
## Run 94 stress 0.1491472 
## Run 95 stress 0.1486227 
## Run 96 stress 0.1464165 
## Run 97 stress 0.1456149 
## ... Procrustes: rmse 0.00540964  max resid 0.0690409 
## Run 98 stress 0.1482315 
## Run 99 stress 0.1466014 
## Run 100 stress 0.146594 
## *** No convergence -- monoMDS stopping criteria:
##     50: no. of iterations >= maxit
##     28: stress ratio > sratmax
##     22: scale factor of the gradient < sfgrmin
nmds

Week
nmds <- phylosmith::nmds_phyloseq(phylosmith::taxa_filter(lake_po, treatment = "Year", subset = "2019"), "Week", circle = FALSE)
## Run 0 stress 0.1457842 
## Run 1 stress 0.1463009 
## Run 2 stress 0.1463274 
## Run 3 stress 0.1454532 
## ... New best solution
## ... Procrustes: rmse 0.00906532  max resid 0.1236171 
## Run 4 stress 0.1459861 
## Run 5 stress 0.1465792 
## Run 6 stress 0.1458724 
## ... Procrustes: rmse 0.005460702  max resid 0.06536204 
## Run 7 stress 0.1489637 
## Run 8 stress 0.1465748 
## Run 9 stress 0.1480978 
## Run 10 stress 0.1465569 
## Run 11 stress 0.1454429 
## ... New best solution
## ... Procrustes: rmse 0.007816377  max resid 0.1181937 
## Run 12 stress 0.1463431 
## Run 13 stress 0.1479325 
## Run 14 stress 0.1470144 
## Run 15 stress 0.1464185 
## Run 16 stress 0.149579 
## Run 17 stress 0.1478147 
## Run 18 stress 0.1488428 
## Run 19 stress 0.1473281 
## Run 20 stress 0.1465481 
## Run 21 stress 0.1460412 
## Run 22 stress 0.1461099 
## Run 23 stress 0.1459126 
## ... Procrustes: rmse 0.00931668  max resid 0.06290936 
## Run 24 stress 0.1471427 
## Run 25 stress 0.1503411 
## Run 26 stress 0.1463308 
## Run 27 stress 0.1498315 
## Run 28 stress 0.1527134 
## Run 29 stress 0.1477335 
## Run 30 stress 0.1458623 
## ... Procrustes: rmse 0.01348141  max resid 0.1212376 
## Run 31 stress 0.145786 
## ... Procrustes: rmse 0.008884608  max resid 0.1197189 
## Run 32 stress 0.1463878 
## Run 33 stress 0.1483779 
## Run 34 stress 0.145902 
## ... Procrustes: rmse 0.006651233  max resid 0.1147746 
## Run 35 stress 0.1485966 
## Run 36 stress 0.1481901 
## Run 37 stress 0.1469377 
## Run 38 stress 0.1475125 
## Run 39 stress 0.1471677 
## Run 40 stress 0.146242 
## Run 41 stress 0.1462416 
## Run 42 stress 0.1523897 
## Run 43 stress 0.1468371 
## Run 44 stress 0.1492879 
## Run 45 stress 0.14962 
## Run 46 stress 0.1514586 
## Run 47 stress 0.1463183 
## Run 48 stress 0.1471443 
## Run 49 stress 0.1455866 
## ... Procrustes: rmse 0.004466831  max resid 0.05795141 
## Run 50 stress 0.1468258 
## Run 51 stress 0.1466945 
## Run 52 stress 0.1520604 
## Run 53 stress 0.1503131 
## Run 54 stress 0.1501183 
## Run 55 stress 0.1477847 
## Run 56 stress 0.1505402 
## Run 57 stress 0.1461675 
## Run 58 stress 0.1545044 
## Run 59 stress 0.14732 
## Run 60 stress 0.1459432 
## Run 61 stress 0.1455793 
## ... Procrustes: rmse 0.007071441  max resid 0.06244176 
## Run 62 stress 0.1466584 
## Run 63 stress 0.1469733 
## Run 64 stress 0.1472834 
## Run 65 stress 0.1456781 
## ... Procrustes: rmse 0.005769766  max resid 0.05913376 
## Run 66 stress 0.1460553 
## Run 67 stress 0.1464223 
## Run 68 stress 0.1477841 
## Run 69 stress 0.1472291 
## Run 70 stress 0.1461322 
## Run 71 stress 0.1497628 
## Run 72 stress 0.146638 
## Run 73 stress 0.1489103 
## Run 74 stress 0.1458234 
## ... Procrustes: rmse 0.006928343  max resid 0.06109516 
## Run 75 stress 0.1468687 
## Run 76 stress 0.1500604 
## Run 77 stress 0.1458676 
## ... Procrustes: rmse 0.01370557  max resid 0.1210633 
## Run 78 stress 0.1475077 
## Run 79 stress 0.1459603 
## Run 80 stress 0.1455695 
## ... Procrustes: rmse 0.004084899  max resid 0.05806143 
## Run 81 stress 0.1483233 
## Run 82 stress 0.1457259 
## ... Procrustes: rmse 0.006361035  max resid 0.05889502 
## Run 83 stress 0.147871 
## Run 84 stress 0.1469778 
## Run 85 stress 0.1496524 
## Run 86 stress 0.1477034 
## Run 87 stress 0.1455003 
## ... Procrustes: rmse 0.005603527  max resid 0.05853369 
## Run 88 stress 0.1463538 
## Run 89 stress 0.1462029 
## Run 90 stress 0.147447 
## Run 91 stress 0.1462819 
## Run 92 stress 0.148836 
## Run 93 stress 0.1492734 
## Run 94 stress 0.1456073 
## ... Procrustes: rmse 0.00463276  max resid 0.05731454 
## Run 95 stress 0.1498788 
## Run 96 stress 0.146187 
## Run 97 stress 0.1458016 
## ... Procrustes: rmse 0.005225793  max resid 0.06397714 
## Run 98 stress 0.1463013 
## Run 99 stress 0.1459118 
## ... Procrustes: rmse 0.006178984  max resid 0.08843215 
## Run 100 stress 0.1461103 
## *** No convergence -- monoMDS stopping criteria:
##     65: no. of iterations >= maxit
##     31: stress ratio > sratmax
##      4: scale factor of the gradient < sfgrmin
nmds

Risk Level
nmds <- phylosmith::nmds_phyloseq(phylosmith::taxa_filter(lake_po, treatment = "Year", subset = "2019"), "Risk", circle = FALSE)
## Run 0 stress 0.1457842 
## Run 1 stress 0.1556407 
## Run 2 stress 0.1465798 
## Run 3 stress 0.145555 
## ... New best solution
## ... Procrustes: rmse 0.005083624  max resid 0.0636229 
## Run 4 stress 0.1486666 
## Run 5 stress 0.1462423 
## Run 6 stress 0.1472226 
## Run 7 stress 0.1525679 
## Run 8 stress 0.1499671 
## Run 9 stress 0.148226 
## Run 10 stress 0.1490897 
## Run 11 stress 0.1497553 
## Run 12 stress 0.1480912 
## Run 13 stress 0.1477832 
## Run 14 stress 0.1527338 
## Run 15 stress 0.1456505 
## ... Procrustes: rmse 0.003662627  max resid 0.05051715 
## Run 16 stress 0.1476873 
## Run 17 stress 0.1477799 
## Run 18 stress 0.1466374 
## Run 19 stress 0.146194 
## Run 20 stress 0.1469794 
## Run 21 stress 0.1476652 
## Run 22 stress 0.1469257 
## Run 23 stress 0.1462711 
## Run 24 stress 0.1487516 
## Run 25 stress 0.146277 
## Run 26 stress 0.1462966 
## Run 27 stress 0.1513383 
## Run 28 stress 0.1454849 
## ... New best solution
## ... Procrustes: rmse 0.006520005  max resid 0.0611533 
## Run 29 stress 0.1495742 
## Run 30 stress 0.1471831 
## Run 31 stress 0.1474028 
## Run 32 stress 0.1483918 
## Run 33 stress 0.1462517 
## Run 34 stress 0.1490619 
## Run 35 stress 0.1457366 
## ... Procrustes: rmse 0.007801955  max resid 0.1070936 
## Run 36 stress 0.1464077 
## Run 37 stress 0.1471831 
## Run 38 stress 0.1457563 
## ... Procrustes: rmse 0.00556192  max resid 0.06869599 
## Run 39 stress 0.1468055 
## Run 40 stress 0.148126 
## Run 41 stress 0.1477858 
## Run 42 stress 0.1466109 
## Run 43 stress 0.1472079 
## Run 44 stress 0.1497806 
## Run 45 stress 0.1466713 
## Run 46 stress 0.1457217 
## ... Procrustes: rmse 0.008320114  max resid 0.06348916 
## Run 47 stress 0.1476494 
## Run 48 stress 0.1460164 
## Run 49 stress 0.1466907 
## Run 50 stress 0.1455612 
## ... Procrustes: rmse 0.007005257  max resid 0.06130199 
## Run 51 stress 0.1464339 
## Run 52 stress 0.1463856 
## Run 53 stress 0.1465636 
## Run 54 stress 0.1462257 
## Run 55 stress 0.1493253 
## Run 56 stress 0.1467673 
## Run 57 stress 0.1466928 
## Run 58 stress 0.1466216 
## Run 59 stress 0.1486133 
## Run 60 stress 0.1477697 
## Run 61 stress 0.1496958 
## Run 62 stress 0.1487504 
## Run 63 stress 0.1465145 
## Run 64 stress 0.1519155 
## Run 65 stress 0.1475529 
## Run 66 stress 0.147456 
## Run 67 stress 0.1455247 
## ... Procrustes: rmse 0.003760189  max resid 0.03947446 
## Run 68 stress 0.1509281 
## Run 69 stress 0.1482108 
## Run 70 stress 0.1469645 
## Run 71 stress 0.1488724 
## Run 72 stress 0.1467856 
## Run 73 stress 0.1459882 
## Run 74 stress 0.1506897 
## Run 75 stress 0.146605 
## Run 76 stress 0.1464087 
## Run 77 stress 0.1463852 
## Run 78 stress 0.1471315 
## Run 79 stress 0.1483322 
## Run 80 stress 0.1472302 
## Run 81 stress 0.1459149 
## ... Procrustes: rmse 0.007253827  max resid 0.1133324 
## Run 82 stress 0.1475685 
## Run 83 stress 0.1461693 
## Run 84 stress 0.1461543 
## Run 85 stress 0.1495142 
## Run 86 stress 0.1466717 
## Run 87 stress 0.1460526 
## Run 88 stress 0.1458808 
## ... Procrustes: rmse 0.0114799  max resid 0.1177935 
## Run 89 stress 0.1456481 
## ... Procrustes: rmse 0.005511638  max resid 0.06074222 
## Run 90 stress 0.1462659 
## Run 91 stress 0.1468442 
## Run 92 stress 0.1464536 
## Run 93 stress 0.146126 
## Run 94 stress 0.1504231 
## Run 95 stress 0.1459509 
## ... Procrustes: rmse 0.007596407  max resid 0.1168635 
## Run 96 stress 0.1462216 
## Run 97 stress 0.1462365 
## Run 98 stress 0.1453982 
## ... New best solution
## ... Procrustes: rmse 0.004435842  max resid 0.06870149 
## Run 99 stress 0.1470644 
## Run 100 stress 0.1523444 
## *** No convergence -- monoMDS stopping criteria:
##     48: no. of iterations >= maxit
##     41: stress ratio > sratmax
##     11: scale factor of the gradient < sfgrmin
nmds

tSNE

Lake
phylosmith::tsne_phyloseq(phylosmith::taxa_filter(lake_po, treatment = "Year", subset = "2019"), "Location", circle = FALSE)

Week
phylosmith::tsne_phyloseq(phylosmith::taxa_filter(lake_po, treatment = "Year", subset = "2019"), "Week", circle = FALSE)

Risk Level
phylosmith::tsne_phyloseq(phylosmith::taxa_filter(lake_po, treatment = "Year", subset = "2019"), "Risk", circle = FALSE)

Overall

PCoA

Lake
phylosmith::pcoa_phyloseq(lake_po, "Location", circle = FALSE)

Week
phylosmith::pcoa_phyloseq(lake_po, "Week", circle = FALSE)

Risk Level
phylosmith::pcoa_phyloseq(lake_po, "Risk", circle = FALSE)

NMDS

Lake
nmds <- phylosmith::nmds_phyloseq(lake_po, "Location", circle = FALSE)
## Run 0 stress 0.1447445 
## Run 1 stress 0.146568 
## Run 2 stress 0.1462368 
## Run 3 stress 0.1474159 
## Run 4 stress 0.1465132 
## Run 5 stress 0.1452525 
## Run 6 stress 0.1526152 
## Run 7 stress 0.1451412 
## ... Procrustes: rmse 0.004851912  max resid 0.05867224 
## Run 8 stress 0.1483766 
## Run 9 stress 0.1453947 
## Run 10 stress 0.1484696 
## Run 11 stress 0.1468717 
## Run 12 stress 0.1493467 
## Run 13 stress 0.1473053 
## Run 14 stress 0.1484901 
## Run 15 stress 0.1515183 
## Run 16 stress 0.1478753 
## Run 17 stress 0.1491707 
## Run 18 stress 0.1467769 
## Run 19 stress 0.1489898 
## Run 20 stress 0.1486828 
## Run 21 stress 0.1477854 
## Run 22 stress 0.1471385 
## Run 23 stress 0.1493171 
## Run 24 stress 0.1468133 
## Run 25 stress 0.1470787 
## Run 26 stress 0.1451479 
## ... Procrustes: rmse 0.004605598  max resid 0.05903407 
## Run 27 stress 0.1478198 
## Run 28 stress 0.1453489 
## Run 29 stress 0.1513131 
## Run 30 stress 0.146917 
## Run 31 stress 0.1481365 
## Run 32 stress 0.1461463 
## Run 33 stress 0.150279 
## Run 34 stress 0.146568 
## Run 35 stress 0.147112 
## Run 36 stress 0.1496341 
## Run 37 stress 0.1471829 
## Run 38 stress 0.1489414 
## Run 39 stress 0.14969 
## Run 40 stress 0.1467427 
## Run 41 stress 0.1453864 
## Run 42 stress 0.1449385 
## ... Procrustes: rmse 0.006102017  max resid 0.06926836 
## Run 43 stress 0.1459078 
## Run 44 stress 0.1466802 
## Run 45 stress 0.1452846 
## Run 46 stress 0.1475927 
## Run 47 stress 0.1492958 
## Run 48 stress 0.1456763 
## Run 49 stress 0.148007 
## Run 50 stress 0.1493976 
## Run 51 stress 0.1455177 
## Run 52 stress 0.1458276 
## Run 53 stress 0.1460716 
## Run 54 stress 0.1474245 
## Run 55 stress 0.1471451 
## Run 56 stress 0.1463526 
## Run 57 stress 0.1468093 
## Run 58 stress 0.1466315 
## Run 59 stress 0.1456946 
## Run 60 stress 0.1474549 
## Run 61 stress 0.1454671 
## Run 62 stress 0.1508337 
## Run 63 stress 0.1487494 
## Run 64 stress 0.1497164 
## Run 65 stress 0.1491627 
## Run 66 stress 0.1498498 
## Run 67 stress 0.1473264 
## Run 68 stress 0.1466082 
## Run 69 stress 0.1454305 
## Run 70 stress 0.1474395 
## Run 71 stress 0.1476655 
## Run 72 stress 0.1455633 
## Run 73 stress 0.1462626 
## Run 74 stress 0.1466298 
## Run 75 stress 0.1451875 
## ... Procrustes: rmse 0.004943398  max resid 0.06311586 
## Run 76 stress 0.1494845 
## Run 77 stress 0.144872 
## ... Procrustes: rmse 0.004936  max resid 0.06238437 
## Run 78 stress 0.1452931 
## Run 79 stress 0.1465611 
## Run 80 stress 0.1457277 
## Run 81 stress 0.1455034 
## Run 82 stress 0.1498665 
## Run 83 stress 0.1504007 
## Run 84 stress 0.1495029 
## Run 85 stress 0.1459359 
## Run 86 stress 0.1478793 
## Run 87 stress 0.1464958 
## Run 88 stress 0.1465817 
## Run 89 stress 0.1455445 
## Run 90 stress 0.1483798 
## Run 91 stress 0.1458749 
## Run 92 stress 0.1453626 
## Run 93 stress 0.147173 
## Run 94 stress 0.147054 
## Run 95 stress 0.1465363 
## Run 96 stress 0.1479921 
## Run 97 stress 0.1479797 
## Run 98 stress 0.1501816 
## Run 99 stress 0.1456669 
## Run 100 stress 0.1496775 
## *** No convergence -- monoMDS stopping criteria:
##     71: no. of iterations >= maxit
##     29: scale factor of the gradient < sfgrmin
nmds

Week
nmds <- phylosmith::nmds_phyloseq(lake_po, "Week", circle = FALSE)
## Run 0 stress 0.1447445 
## Run 1 stress 0.146145 
## Run 2 stress 0.146554 
## Run 3 stress 0.1463346 
## Run 4 stress 0.1461705 
## Run 5 stress 0.1507182 
## Run 6 stress 0.1472752 
## Run 7 stress 0.146238 
## Run 8 stress 0.1459999 
## Run 9 stress 0.1513556 
## Run 10 stress 0.1494013 
## Run 11 stress 0.1457376 
## Run 12 stress 0.1460001 
## Run 13 stress 0.1454694 
## Run 14 stress 0.1494682 
## Run 15 stress 0.1455375 
## Run 16 stress 0.1497796 
## Run 17 stress 0.1466561 
## Run 18 stress 0.149973 
## Run 19 stress 0.1469252 
## Run 20 stress 0.1490249 
## Run 21 stress 0.1472978 
## Run 22 stress 0.1471623 
## Run 23 stress 0.1470394 
## Run 24 stress 0.1457647 
## Run 25 stress 0.1464261 
## Run 26 stress 0.1472029 
## Run 27 stress 0.1454577 
## Run 28 stress 0.1459591 
## Run 29 stress 0.1486776 
## Run 30 stress 0.1454525 
## Run 31 stress 0.1503549 
## Run 32 stress 0.1463732 
## Run 33 stress 0.1463729 
## Run 34 stress 0.1460805 
## Run 35 stress 0.150204 
## Run 36 stress 0.1486836 
## Run 37 stress 0.1474997 
## Run 38 stress 0.1474449 
## Run 39 stress 0.1464692 
## Run 40 stress 0.1453129 
## Run 41 stress 0.1498317 
## Run 42 stress 0.1517492 
## Run 43 stress 0.145378 
## Run 44 stress 0.1487596 
## Run 45 stress 0.149771 
## Run 46 stress 0.1464802 
## Run 47 stress 0.1468165 
## Run 48 stress 0.1466949 
## Run 49 stress 0.1483793 
## Run 50 stress 0.1482723 
## Run 51 stress 0.1492708 
## Run 52 stress 0.1457472 
## Run 53 stress 0.14693 
## Run 54 stress 0.1457283 
## Run 55 stress 0.146192 
## Run 56 stress 0.1460739 
## Run 57 stress 0.1469142 
## Run 58 stress 0.1450826 
## ... Procrustes: rmse 0.004695797  max resid 0.06252713 
## Run 59 stress 0.146388 
## Run 60 stress 0.1499891 
## Run 61 stress 0.1488062 
## Run 62 stress 0.1474043 
## Run 63 stress 0.1458568 
## Run 64 stress 0.1460711 
## Run 65 stress 0.1473379 
## Run 66 stress 0.1507758 
## Run 67 stress 0.1506944 
## Run 68 stress 0.1457793 
## Run 69 stress 0.146523 
## Run 70 stress 0.1486978 
## Run 71 stress 0.144758 
## ... Procrustes: rmse 0.00507235  max resid 0.06126044 
## Run 72 stress 0.1467121 
## Run 73 stress 0.1511894 
## Run 74 stress 0.1463404 
## Run 75 stress 0.1496586 
## Run 76 stress 0.149032 
## Run 77 stress 0.14585 
## Run 78 stress 0.1468082 
## Run 79 stress 0.1452072 
## ... Procrustes: rmse 0.005505868  max resid 0.06607913 
## Run 80 stress 0.1502066 
## Run 81 stress 0.1502619 
## Run 82 stress 0.1463098 
## Run 83 stress 0.1506739 
## Run 84 stress 0.1479731 
## Run 85 stress 0.1451338 
## ... Procrustes: rmse 0.004454308  max resid 0.06270039 
## Run 86 stress 0.1454173 
## Run 87 stress 0.1458175 
## Run 88 stress 0.1475353 
## Run 89 stress 0.1464269 
## Run 90 stress 0.146729 
## Run 91 stress 0.1491647 
## Run 92 stress 0.1516288 
## Run 93 stress 0.1465476 
## Run 94 stress 0.1466354 
## Run 95 stress 0.1453873 
## Run 96 stress 0.1495685 
## Run 97 stress 0.1458478 
## Run 98 stress 0.1507436 
## Run 99 stress 0.1459147 
## Run 100 stress 0.145382 
## *** No convergence -- monoMDS stopping criteria:
##     79: no. of iterations >= maxit
##     21: scale factor of the gradient < sfgrmin
nmds

Risk Level
nmds <- phylosmith::nmds_phyloseq(lake_po, "Risk", circle = FALSE)
## Run 0 stress 0.1447445 
## Run 1 stress 0.1492088 
## Run 2 stress 0.1480524 
## Run 3 stress 0.1470034 
## Run 4 stress 0.1453114 
## Run 5 stress 0.148404 
## Run 6 stress 0.1461156 
## Run 7 stress 0.1462153 
## Run 8 stress 0.1453464 
## Run 9 stress 0.1454589 
## Run 10 stress 0.1474809 
## Run 11 stress 0.148399 
## Run 12 stress 0.1485369 
## Run 13 stress 0.1475157 
## Run 14 stress 0.1487871 
## Run 15 stress 0.1462529 
## Run 16 stress 0.150083 
## Run 17 stress 0.1464079 
## Run 18 stress 0.1488846 
## Run 19 stress 0.1460325 
## Run 20 stress 0.1499759 
## Run 21 stress 0.1461014 
## Run 22 stress 0.1450947 
## ... Procrustes: rmse 0.004440902  max resid 0.05903756 
## Run 23 stress 0.1466208 
## Run 24 stress 0.1450125 
## ... Procrustes: rmse 0.005376404  max resid 0.06055063 
## Run 25 stress 0.1450708 
## ... Procrustes: rmse 0.004490897  max resid 0.06385855 
## Run 26 stress 0.1447029 
## ... New best solution
## ... Procrustes: rmse 0.005446384  max resid 0.06352299 
## Run 27 stress 0.1511796 
## Run 28 stress 0.1467684 
## Run 29 stress 0.1501101 
## Run 30 stress 0.147622 
## Run 31 stress 0.1467298 
## Run 32 stress 0.1480207 
## Run 33 stress 0.1466536 
## Run 34 stress 0.147015 
## Run 35 stress 0.1452958 
## Run 36 stress 0.1460201 
## Run 37 stress 0.1455325 
## Run 38 stress 0.1483028 
## Run 39 stress 0.1499295 
## Run 40 stress 0.1452864 
## Run 41 stress 0.1503622 
## Run 42 stress 0.1448688 
## ... Procrustes: rmse 0.005314169  max resid 0.08595087 
## Run 43 stress 0.1475578 
## Run 44 stress 0.1451589 
## ... Procrustes: rmse 0.004574998  max resid 0.06857396 
## Run 45 stress 0.147967 
## Run 46 stress 0.1489591 
## Run 47 stress 0.1456621 
## Run 48 stress 0.1464971 
## Run 49 stress 0.1475272 
## Run 50 stress 0.1460365 
## Run 51 stress 0.1475181 
## Run 52 stress 0.1503475 
## Run 53 stress 0.1458541 
## Run 54 stress 0.1479767 
## Run 55 stress 0.1457565 
## Run 56 stress 0.1456873 
## Run 57 stress 0.1453727 
## Run 58 stress 0.1462722 
## Run 59 stress 0.1487094 
## Run 60 stress 0.1503914 
## Run 61 stress 0.1471828 
## Run 62 stress 0.1456594 
## Run 63 stress 0.1479103 
## Run 64 stress 0.1463755 
## Run 65 stress 0.1465747 
## Run 66 stress 0.1498418 
## Run 67 stress 0.1471366 
## Run 68 stress 0.1464779 
## Run 69 stress 0.145989 
## Run 70 stress 0.1465073 
## Run 71 stress 0.1504413 
## Run 72 stress 0.1461481 
## Run 73 stress 0.150195 
## Run 74 stress 0.1508891 
## Run 75 stress 0.145572 
## Run 76 stress 0.1482176 
## Run 77 stress 0.1450444 
## ... Procrustes: rmse 0.005839195  max resid 0.0865021 
## Run 78 stress 0.1447935 
## ... Procrustes: rmse 0.003788454  max resid 0.05861557 
## Run 79 stress 0.1460542 
## Run 80 stress 0.1487262 
## Run 81 stress 0.1460133 
## Run 82 stress 0.1455 
## Run 83 stress 0.1451941 
## ... Procrustes: rmse 0.005914635  max resid 0.06414505 
## Run 84 stress 0.1501153 
## Run 85 stress 0.1486128 
## Run 86 stress 0.1456429 
## Run 87 stress 0.1456234 
## Run 88 stress 0.1463983 
## Run 89 stress 0.1497798 
## Run 90 stress 0.1461505 
## Run 91 stress 0.1491609 
## Run 92 stress 0.1475005 
## Run 93 stress 0.1488378 
## Run 94 stress 0.1465953 
## Run 95 stress 0.1455085 
## Run 96 stress 0.1501722 
## Run 97 stress 0.1469628 
## Run 98 stress 0.1464318 
## Run 99 stress 0.1482237 
## Run 100 stress 0.1494961 
## *** No convergence -- monoMDS stopping criteria:
##     66: no. of iterations >= maxit
##      1: stress ratio > sratmax
##     33: scale factor of the gradient < sfgrmin
nmds

tSNE

Lake
phylosmith::tsne_phyloseq(lake_po, "Location", circle = FALSE) + 
  guides(fill = guide_legend(ncol = 2), override.aes = list(size = 4))

Week
phylosmith::tsne_phyloseq(lake_po, "Week", circle = FALSE)

Year
phylosmith::tsne_phyloseq(lake_po, "Year", circle = FALSE)

Risk Level
phylosmith::tsne_phyloseq(lake_po, "Risk", circle = FALSE)

High- & Low-Risk Lakes

iowa <- readRDS('../data/maps/iowa_terrain_map.RDS')

ggmap::ggmap(iowa) + 
  geom_point(data = lakes, aes(x = Longitude, y = Latitude), 
             color = lakes$Risk,
             size = 8,
             alpha = 0.8) +
  ggrepel::geom_text_repel(data = lakes, aes(x = Longitude, y = Latitude, label = Lake), 
                           point.padding = unit(0.5,"lines"), 
                           box.padding = unit(0.35, "lines"), 
                           label.r = 0,
                           label.padding = unit(0.2,"lines"),
                           max.overlaps = 10,
                           size = 2.8,
                           max.time = 10)

Subset 8 High- and Low-Risk

sam <- dcast(data.table(as(lake_po@sam_data, 'data.frame')), Location ~ Risk, fun.aggregate = length)
setkey(sam, High)
high_risk_lakes <- tail(sam$Location, 8)
low_risk_lakes <- head(sam$Location, 8)
lake_hl <- taxa_filter(lake_po,
                       treatment = "Location",
                       subset = c(high_risk_lakes, low_risk_lakes))
sam <- cbind(lake_hl@sam_data, Lake_Risk = "Low")
sam[sam$Location %in% high_risk_lakes,]$Lake_Risk <- "High"
lake_hl@sam_data <- sample_data(sam)

2018

PCoA

Lake
phylosmith::pcoa_phyloseq(phylosmith::taxa_filter(lake_hl, treatment = "Year", subset = "2018"), "Location", circle = FALSE)

Week
phylosmith::pcoa_phyloseq(phylosmith::taxa_filter(lake_hl, treatment = "Year", subset = "2018"), "Week", circle = FALSE)

Risk Level
phylosmith::pcoa_phyloseq(phylosmith::taxa_filter(lake_hl, treatment = "Year", subset = "2018"), "Risk", circle = FALSE)

NMDS

Lake
nmds <- phylosmith::nmds_phyloseq(phylosmith::taxa_filter(lake_hl, treatment = "Year", subset = "2018"), "Location", circle = FALSE)
## Run 0 stress 0.1248138 
## Run 1 stress 0.1251701 
## ... Procrustes: rmse 0.006741509  max resid 0.1006938 
## Run 2 stress 0.1251701 
## ... Procrustes: rmse 0.0067321  max resid 0.1006057 
## Run 3 stress 0.1256634 
## Run 4 stress 0.1248136 
## ... New best solution
## ... Procrustes: rmse 8.603979e-05  max resid 0.001124684 
## ... Similar to previous best
## Run 5 stress 0.1251701 
## ... Procrustes: rmse 0.006735902  max resid 0.100619 
## Run 6 stress 0.1248139 
## ... Procrustes: rmse 5.904317e-05  max resid 0.0005315574 
## ... Similar to previous best
## Run 7 stress 0.1248138 
## ... Procrustes: rmse 5.132833e-05  max resid 0.0004734353 
## ... Similar to previous best
## Run 8 stress 0.1252368 
## ... Procrustes: rmse 0.006793444  max resid 0.1001675 
## Run 9 stress 0.1253916 
## Run 10 stress 0.1248136 
## ... New best solution
## ... Procrustes: rmse 5.147802e-05  max resid 0.0003950318 
## ... Similar to previous best
## Run 11 stress 0.1248137 
## ... Procrustes: rmse 5.991707e-05  max resid 0.0003323289 
## ... Similar to previous best
## Run 12 stress 0.1248137 
## ... Procrustes: rmse 6.455498e-05  max resid 0.0004578833 
## ... Similar to previous best
## Run 13 stress 0.1251857 
## ... Procrustes: rmse 0.006782976  max resid 0.1007379 
## Run 14 stress 0.1248138 
## ... Procrustes: rmse 0.0001014223  max resid 0.0009138532 
## ... Similar to previous best
## Run 15 stress 0.1248137 
## ... Procrustes: rmse 5.687056e-05  max resid 0.0003102501 
## ... Similar to previous best
## Run 16 stress 0.1248136 
## ... Procrustes: rmse 5.364152e-05  max resid 0.0004133665 
## ... Similar to previous best
## Run 17 stress 0.1248136 
## ... Procrustes: rmse 4.148088e-05  max resid 0.0003619523 
## ... Similar to previous best
## Run 18 stress 0.12517 
## ... Procrustes: rmse 0.006727049  max resid 0.1005389 
## Run 19 stress 0.1248138 
## ... Procrustes: rmse 8.531366e-05  max resid 0.0006398595 
## ... Similar to previous best
## Run 20 stress 0.1302233 
## *** Solution reached
nmds

Week
nmds <- phylosmith::nmds_phyloseq(phylosmith::taxa_filter(lake_hl, treatment = "Year", subset = "2018"), "Week", circle = FALSE)
## Run 0 stress 0.1248138 
## Run 1 stress 0.1251701 
## ... Procrustes: rmse 0.006726501  max resid 0.1005376 
## Run 2 stress 0.1379699 
## Run 3 stress 0.1248136 
## ... New best solution
## ... Procrustes: rmse 7.942182e-05  max resid 0.00108316 
## ... Similar to previous best
## Run 4 stress 0.1248136 
## ... Procrustes: rmse 4.884322e-05  max resid 0.0005512962 
## ... Similar to previous best
## Run 5 stress 0.1248136 
## ... Procrustes: rmse 2.734524e-05  max resid 0.0002000603 
## ... Similar to previous best
## Run 6 stress 0.1248137 
## ... Procrustes: rmse 5.368221e-05  max resid 0.0003962568 
## ... Similar to previous best
## Run 7 stress 0.1248136 
## ... New best solution
## ... Procrustes: rmse 2.012356e-05  max resid 0.000258075 
## ... Similar to previous best
## Run 8 stress 0.12517 
## ... Procrustes: rmse 0.006732637  max resid 0.1006046 
## Run 9 stress 0.1248138 
## ... Procrustes: rmse 6.365283e-05  max resid 0.000389993 
## ... Similar to previous best
## Run 10 stress 0.1248137 
## ... Procrustes: rmse 3.260136e-05  max resid 0.0002154423 
## ... Similar to previous best
## Run 11 stress 0.1255076 
## Run 12 stress 0.1256635 
## Run 13 stress 0.1249574 
## ... Procrustes: rmse 0.001713641  max resid 0.01649694 
## Run 14 stress 0.12517 
## ... Procrustes: rmse 0.006727726  max resid 0.1005424 
## Run 15 stress 0.1248136 
## ... Procrustes: rmse 1.972098e-05  max resid 0.0001668407 
## ... Similar to previous best
## Run 16 stress 0.1248136 
## ... Procrustes: rmse 4.221291e-05  max resid 0.0003396616 
## ... Similar to previous best
## Run 17 stress 0.126103 
## Run 18 stress 0.12517 
## ... Procrustes: rmse 0.006733588  max resid 0.1006126 
## Run 19 stress 0.1256634 
## Run 20 stress 0.1248137 
## ... Procrustes: rmse 7.068487e-05  max resid 0.0006762619 
## ... Similar to previous best
## *** Solution reached
nmds

Risk Level
nmds <- phylosmith::nmds_phyloseq(phylosmith::taxa_filter(lake_hl, treatment = "Year", subset = "2018"), "Risk", circle = FALSE)
## Run 0 stress 0.1248138 
## Run 1 stress 0.1253914 
## Run 2 stress 0.1248137 
## ... New best solution
## ... Procrustes: rmse 9.562461e-05  max resid 0.001164822 
## ... Similar to previous best
## Run 3 stress 0.1248136 
## ... New best solution
## ... Procrustes: rmse 4.656927e-05  max resid 0.0004472838 
## ... Similar to previous best
## Run 4 stress 0.1336313 
## Run 5 stress 0.1248275 
## ... Procrustes: rmse 0.0005625691  max resid 0.007361095 
## ... Similar to previous best
## Run 6 stress 0.1354575 
## Run 7 stress 0.1248136 
## ... Procrustes: rmse 4.085881e-05  max resid 0.0004079089 
## ... Similar to previous best
## Run 8 stress 0.1248137 
## ... Procrustes: rmse 4.740309e-05  max resid 0.000507274 
## ... Similar to previous best
## Run 9 stress 0.1383593 
## Run 10 stress 0.1392798 
## Run 11 stress 0.1256634 
## Run 12 stress 0.1248136 
## ... Procrustes: rmse 2.689634e-05  max resid 0.0002607917 
## ... Similar to previous best
## Run 13 stress 0.1253914 
## Run 14 stress 0.1248141 
## ... Procrustes: rmse 9.702994e-05  max resid 0.001210237 
## ... Similar to previous best
## Run 15 stress 0.1253914 
## Run 16 stress 0.1253913 
## Run 17 stress 0.1248136 
## ... Procrustes: rmse 6.969598e-06  max resid 3.931642e-05 
## ... Similar to previous best
## Run 18 stress 0.1248136 
## ... New best solution
## ... Procrustes: rmse 1.655662e-05  max resid 0.0001434945 
## ... Similar to previous best
## Run 19 stress 0.1248136 
## ... Procrustes: rmse 3.819622e-05  max resid 0.000155546 
## ... Similar to previous best
## Run 20 stress 0.12517 
## ... Procrustes: rmse 0.006727108  max resid 0.100523 
## *** Solution reached
nmds

tSNE

Lake
phylosmith::tsne_phyloseq(phylosmith::taxa_filter(lake_hl, treatment = "Year", subset = "2018"), "Location", circle = FALSE)

Week
phylosmith::tsne_phyloseq(phylosmith::taxa_filter(lake_hl, treatment = "Year", subset = "2018"), "Week", circle = FALSE)

Risk Level
phylosmith::tsne_phyloseq(phylosmith::taxa_filter(lake_hl, treatment = "Year", subset = "2018"), "Risk", circle = FALSE)

2019

PCoA

Lake
phylosmith::pcoa_phyloseq(phylosmith::taxa_filter(lake_hl, treatment = "Year", subset = "2019"), "Location", circle = FALSE)

Week
phylosmith::pcoa_phyloseq(phylosmith::taxa_filter(lake_hl, treatment = "Year", subset = "2019"), "Week", circle = FALSE)

Risk Level
phylosmith::pcoa_phyloseq(phylosmith::taxa_filter(lake_hl, treatment = "Year", subset = "2019"), "Risk", circle = FALSE)

NMDS

Lake
nmds <- phylosmith::nmds_phyloseq(phylosmith::taxa_filter(lake_hl, treatment = "Year", subset = "2019"), "Location", circle = FALSE)
## Run 0 stress 0.1295299 
## Run 1 stress 0.1359477 
## Run 2 stress 0.129769 
## ... Procrustes: rmse 0.004853889  max resid 0.06681385 
## Run 3 stress 0.1297503 
## ... Procrustes: rmse 0.004259098  max resid 0.06033694 
## Run 4 stress 0.1295023 
## ... New best solution
## ... Procrustes: rmse 0.001876458  max resid 0.02765472 
## Run 5 stress 0.1333692 
## Run 6 stress 0.1296681 
## ... Procrustes: rmse 0.002692991  max resid 0.02848505 
## Run 7 stress 0.1339988 
## Run 8 stress 0.1340386 
## Run 9 stress 0.1297158 
## ... Procrustes: rmse 0.004202556  max resid 0.06079285 
## Run 10 stress 0.1326678 
## Run 11 stress 0.1300423 
## Run 12 stress 0.1346605 
## Run 13 stress 0.1303504 
## Run 14 stress 0.129375 
## ... New best solution
## ... Procrustes: rmse 0.01096807  max resid 0.1450638 
## Run 15 stress 0.1336596 
## Run 16 stress 0.1363877 
## Run 17 stress 0.1338093 
## Run 18 stress 0.1324755 
## Run 19 stress 0.1337588 
## Run 20 stress 0.1306154 
## Run 21 stress 0.1296662 
## ... Procrustes: rmse 0.008319293  max resid 0.07459154 
## Run 22 stress 0.1351405 
## Run 23 stress 0.1311162 
## Run 24 stress 0.133054 
## Run 25 stress 0.1323616 
## Run 26 stress 0.129915 
## Run 27 stress 0.1337834 
## Run 28 stress 0.1297824 
## ... Procrustes: rmse 0.009726019  max resid 0.14528 
## Run 29 stress 0.1308952 
## Run 30 stress 0.1324975 
## Run 31 stress 0.1312268 
## Run 32 stress 0.1293752 
## ... Procrustes: rmse 9.722816e-05  max resid 0.001015767 
## ... Similar to previous best
## *** Solution reached
nmds

Week
nmds <- phylosmith::nmds_phyloseq(phylosmith::taxa_filter(lake_hl, treatment = "Year", subset = "2019"), "Week", circle = FALSE)
## Run 0 stress 0.1295299 
## Run 1 stress 0.129716 
## ... Procrustes: rmse 0.00465959  max resid 0.06091177 
## Run 2 stress 0.1333178 
## Run 3 stress 0.1299303 
## ... Procrustes: rmse 0.01262672  max resid 0.1446695 
## Run 4 stress 0.1344126 
## Run 5 stress 0.1311827 
## Run 6 stress 0.1317264 
## Run 7 stress 0.1296403 
## ... Procrustes: rmse 0.002660435  max resid 0.02774765 
## Run 8 stress 0.1329752 
## Run 9 stress 0.133433 
## Run 10 stress 0.1340984 
## Run 11 stress 0.1326677 
## Run 12 stress 0.1296326 
## ... Procrustes: rmse 0.01178632  max resid 0.1446776 
## Run 13 stress 0.1331434 
## Run 14 stress 0.1340297 
## Run 15 stress 0.1298661 
## ... Procrustes: rmse 0.01196251  max resid 0.1447304 
## Run 16 stress 0.1338609 
## Run 17 stress 0.1294779 
## ... New best solution
## ... Procrustes: rmse 0.01099381  max resid 0.1448255 
## Run 18 stress 0.1302919 
## Run 19 stress 0.1317042 
## Run 20 stress 0.1296407 
## ... Procrustes: rmse 0.007603855  max resid 0.07351275 
## Run 21 stress 0.1297454 
## ... Procrustes: rmse 0.008115819  max resid 0.07370471 
## Run 22 stress 0.1336377 
## Run 23 stress 0.1307472 
## Run 24 stress 0.12953 
## ... Procrustes: rmse 0.01099133  max resid 0.1448903 
## Run 25 stress 0.1349658 
## Run 26 stress 0.1297159 
## ... Procrustes: rmse 0.01169851  max resid 0.1446161 
## Run 27 stress 0.1330805 
## Run 28 stress 0.133006 
## Run 29 stress 0.1331153 
## Run 30 stress 0.1329609 
## Run 31 stress 0.1300076 
## Run 32 stress 0.13426 
## Run 33 stress 0.1296082 
## ... Procrustes: rmse 0.007903919  max resid 0.0734059 
## Run 34 stress 0.1298588 
## ... Procrustes: rmse 0.007729611  max resid 0.07291069 
## Run 35 stress 0.1322725 
## Run 36 stress 0.1294797 
## ... Procrustes: rmse 0.0003772  max resid 0.003989957 
## ... Similar to previous best
## *** Solution reached
nmds

Risk Level
nmds <- phylosmith::nmds_phyloseq(phylosmith::taxa_filter(lake_hl, treatment = "Year", subset = "2019"), "Risk", circle = FALSE)
## Run 0 stress 0.1295299 
## Run 1 stress 0.1300078 
## ... Procrustes: rmse 0.0061444  max resid 0.06674855 
## Run 2 stress 0.1312791 
## Run 3 stress 0.1300092 
## ... Procrustes: rmse 0.007023221  max resid 0.07490371 
## Run 4 stress 0.1339403 
## Run 5 stress 0.1293248 
## ... New best solution
## ... Procrustes: rmse 0.01073555  max resid 0.1449656 
## Run 6 stress 0.1329896 
## Run 7 stress 0.1292308 
## ... New best solution
## ... Procrustes: rmse 0.005251003  max resid 0.06049822 
## Run 8 stress 0.1294702 
## ... Procrustes: rmse 0.005323505  max resid 0.07295912 
## Run 9 stress 0.1347028 
## Run 10 stress 0.1334263 
## Run 11 stress 0.1298702 
## Run 12 stress 0.1295112 
## ... Procrustes: rmse 0.004921288  max resid 0.06661444 
## Run 13 stress 0.1297469 
## Run 14 stress 0.1299124 
## Run 15 stress 0.1293751 
## ... Procrustes: rmse 0.004786354  max resid 0.06557074 
## Run 16 stress 0.13421 
## Run 17 stress 0.1296679 
## ... Procrustes: rmse 0.009723094  max resid 0.1452414 
## Run 18 stress 0.1323856 
## Run 19 stress 0.1296682 
## ... Procrustes: rmse 0.009720991  max resid 0.1452187 
## Run 20 stress 0.1299866 
## Run 21 stress 0.1325232 
## Run 22 stress 0.1331813 
## Run 23 stress 0.1294714 
## ... Procrustes: rmse 0.00530886  max resid 0.07287186 
## Run 24 stress 0.1302745 
## Run 25 stress 0.1297823 
## Run 26 stress 0.1333514 
## Run 27 stress 0.1336164 
## Run 28 stress 0.1323661 
## Run 29 stress 0.1358143 
## Run 30 stress 0.1340942 
## Run 31 stress 0.1292308 
## ... Procrustes: rmse 0.0001562273  max resid 0.001547965 
## ... Similar to previous best
## *** Solution reached
nmds

tSNE

Lake
phylosmith::tsne_phyloseq(phylosmith::taxa_filter(lake_hl, treatment = "Year", subset = "2019"), "Location", circle = FALSE)

Week
phylosmith::tsne_phyloseq(phylosmith::taxa_filter(lake_hl, treatment = "Year", subset = "2019"), "Week", circle = FALSE)

Risk Level
phylosmith::tsne_phyloseq(phylosmith::taxa_filter(lake_hl, treatment = "Year", subset = "2019"), "Risk", circle = FALSE)

Overall

PCoA

Lake
phylosmith::pcoa_phyloseq(lake_hl, "Location", circle = FALSE)

Week
phylosmith::pcoa_phyloseq(lake_hl, "Week", circle = FALSE)

Risk Level
phylosmith::pcoa_phyloseq(lake_hl, "Risk", circle = FALSE)

NMDS

Lake
nmds <- phylosmith::nmds_phyloseq(lake_hl, "Location", circle = FALSE)
## Run 0 stress 0.1347132 
## Run 1 stress 0.1348436 
## ... Procrustes: rmse 0.009031654  max resid 0.09892143 
## Run 2 stress 0.1365318 
## Run 3 stress 0.133438 
## ... New best solution
## ... Procrustes: rmse 0.007812687  max resid 0.09216308 
## Run 4 stress 0.1403441 
## Run 5 stress 0.1366163 
## Run 6 stress 0.1338161 
## ... Procrustes: rmse 0.006589891  max resid 0.07216588 
## Run 7 stress 0.1349707 
## Run 8 stress 0.1376145 
## Run 9 stress 0.1360748 
## Run 10 stress 0.1351714 
## Run 11 stress 0.1344787 
## Run 12 stress 0.1375359 
## Run 13 stress 0.1372102 
## Run 14 stress 0.1333422 
## ... New best solution
## ... Procrustes: rmse 0.004391674  max resid 0.07186791 
## Run 15 stress 0.135299 
## Run 16 stress 0.1375904 
## Run 17 stress 0.141405 
## Run 18 stress 0.1369677 
## Run 19 stress 0.1359271 
## Run 20 stress 0.1336454 
## ... Procrustes: rmse 0.006168402  max resid 0.06800283 
## Run 21 stress 0.1365012 
## Run 22 stress 0.1405038 
## Run 23 stress 0.1388208 
## Run 24 stress 0.1343021 
## Run 25 stress 0.1336649 
## ... Procrustes: rmse 0.006525277  max resid 0.07219928 
## Run 26 stress 0.1383724 
## Run 27 stress 0.1355926 
## Run 28 stress 0.1348648 
## Run 29 stress 0.1348913 
## Run 30 stress 0.1376534 
## Run 31 stress 0.1388259 
## Run 32 stress 0.1381803 
## Run 33 stress 0.1405196 
## Run 34 stress 0.1378837 
## Run 35 stress 0.136626 
## Run 36 stress 0.1347405 
## Run 37 stress 0.1351199 
## Run 38 stress 0.1358709 
## Run 39 stress 0.1379547 
## Run 40 stress 0.1350401 
## Run 41 stress 0.1340676 
## Run 42 stress 0.1350321 
## Run 43 stress 0.137153 
## Run 44 stress 0.141576 
## Run 45 stress 0.1356272 
## Run 46 stress 0.1340917 
## Run 47 stress 0.1335334 
## ... Procrustes: rmse 0.004498564  max resid 0.06090162 
## Run 48 stress 0.1391953 
## Run 49 stress 0.1349075 
## Run 50 stress 0.1381562 
## Run 51 stress 0.1346357 
## Run 52 stress 0.1334465 
## ... Procrustes: rmse 0.003945713  max resid 0.05888542 
## Run 53 stress 0.1333576 
## ... Procrustes: rmse 0.0039502  max resid 0.05880141 
## Run 54 stress 0.1363647 
## Run 55 stress 0.1366984 
## Run 56 stress 0.1347679 
## Run 57 stress 0.1361692 
## Run 58 stress 0.1346004 
## Run 59 stress 0.1398211 
## Run 60 stress 0.1349684 
## Run 61 stress 0.1350706 
## Run 62 stress 0.1351356 
## Run 63 stress 0.1356075 
## Run 64 stress 0.1386677 
## Run 65 stress 0.1387161 
## Run 66 stress 0.1347965 
## Run 67 stress 0.1338017 
## ... Procrustes: rmse 0.006135036  max resid 0.07238051 
## Run 68 stress 0.1362203 
## Run 69 stress 0.1337974 
## ... Procrustes: rmse 0.003245505  max resid 0.05065314 
## Run 70 stress 0.1336473 
## ... Procrustes: rmse 0.003954935  max resid 0.07062213 
## Run 71 stress 0.1373421 
## Run 72 stress 0.136947 
## Run 73 stress 0.1334478 
## ... Procrustes: rmse 0.004855907  max resid 0.0719941 
## Run 74 stress 0.1360757 
## Run 75 stress 0.1373738 
## Run 76 stress 0.1344458 
## Run 77 stress 0.1348654 
## Run 78 stress 0.1360143 
## Run 79 stress 0.1355641 
## Run 80 stress 0.1339196 
## Run 81 stress 0.1341047 
## Run 82 stress 0.13507 
## Run 83 stress 0.1380248 
## Run 84 stress 0.1336972 
## ... Procrustes: rmse 0.005083274  max resid 0.06030448 
## Run 85 stress 0.1373838 
## Run 86 stress 0.1360724 
## Run 87 stress 0.1335892 
## ... Procrustes: rmse 0.005616892  max resid 0.06787104 
## Run 88 stress 0.1371299 
## Run 89 stress 0.1391808 
## Run 90 stress 0.1381463 
## Run 91 stress 0.1337341 
## ... Procrustes: rmse 0.004941714  max resid 0.07143054 
## Run 92 stress 0.1344438 
## Run 93 stress 0.1347449 
## Run 94 stress 0.1364951 
## Run 95 stress 0.1399561 
## Run 96 stress 0.1360893 
## Run 97 stress 0.1353508 
## Run 98 stress 0.1340192 
## Run 99 stress 0.1360935 
## Run 100 stress 0.1357915 
## *** No convergence -- monoMDS stopping criteria:
##     62: no. of iterations >= maxit
##     30: stress ratio > sratmax
##      8: scale factor of the gradient < sfgrmin
nmds

Week
nmds <- phylosmith::nmds_phyloseq(lake_hl, "Week", circle = FALSE)
## Run 0 stress 0.1347132 
## Run 1 stress 0.1337854 
## ... New best solution
## ... Procrustes: rmse 0.007467792  max resid 0.09233388 
## Run 2 stress 0.134454 
## Run 3 stress 0.1361381 
## Run 4 stress 0.1367644 
## Run 5 stress 0.1348283 
## Run 6 stress 0.1343099 
## Run 7 stress 0.1345735 
## Run 8 stress 0.1359353 
## Run 9 stress 0.1348744 
## Run 10 stress 0.1336415 
## ... New best solution
## ... Procrustes: rmse 0.004659565  max resid 0.06911615 
## Run 11 stress 0.1362805 
## Run 12 stress 0.1333919 
## ... New best solution
## ... Procrustes: rmse 0.00544947  max resid 0.07053493 
## Run 13 stress 0.13508 
## Run 14 stress 0.1340679 
## Run 15 stress 0.1367688 
## Run 16 stress 0.1351409 
## Run 17 stress 0.1335114 
## ... Procrustes: rmse 0.005097179  max resid 0.07124769 
## Run 18 stress 0.1347611 
## Run 19 stress 0.1354923 
## Run 20 stress 0.1346929 
## Run 21 stress 0.1378737 
## Run 22 stress 0.1380422 
## Run 23 stress 0.1355641 
## Run 24 stress 0.1332492 
## ... New best solution
## ... Procrustes: rmse 0.003776491  max resid 0.07079583 
## Run 25 stress 0.1386707 
## Run 26 stress 0.1347417 
## Run 27 stress 0.1349199 
## Run 28 stress 0.1361294 
## Run 29 stress 0.1380803 
## Run 30 stress 0.1348692 
## Run 31 stress 0.1359336 
## Run 32 stress 0.1350143 
## Run 33 stress 0.1376106 
## Run 34 stress 0.135667 
## Run 35 stress 0.1335697 
## ... Procrustes: rmse 0.004972253  max resid 0.06750025 
## Run 36 stress 0.1399383 
## Run 37 stress 0.13369 
## ... Procrustes: rmse 0.005816972  max resid 0.06780245 
## Run 38 stress 0.1338097 
## Run 39 stress 0.1344052 
## Run 40 stress 0.1342995 
## Run 41 stress 0.1350072 
## Run 42 stress 0.138619 
## Run 43 stress 0.135307 
## Run 44 stress 0.1381778 
## Run 45 stress 0.1339845 
## Run 46 stress 0.1333901 
## ... Procrustes: rmse 0.003786996  max resid 0.0708478 
## Run 47 stress 0.1385928 
## Run 48 stress 0.1363974 
## Run 49 stress 0.1357142 
## Run 50 stress 0.133528 
## ... Procrustes: rmse 0.004544976  max resid 0.07117656 
## Run 51 stress 0.134513 
## Run 52 stress 0.1348387 
## Run 53 stress 0.1361011 
## Run 54 stress 0.1393317 
## Run 55 stress 0.1366791 
## Run 56 stress 0.1409565 
## Run 57 stress 0.1346443 
## Run 58 stress 0.1377787 
## Run 59 stress 0.1384339 
## Run 60 stress 0.1351157 
## Run 61 stress 0.1349976 
## Run 62 stress 0.1347069 
## Run 63 stress 0.1345888 
## Run 64 stress 0.1351402 
## Run 65 stress 0.1371282 
## Run 66 stress 0.1352488 
## Run 67 stress 0.1390394 
## Run 68 stress 0.1348898 
## Run 69 stress 0.1333719 
## ... Procrustes: rmse 0.002836849  max resid 0.0426216 
## Run 70 stress 0.1386581 
## Run 71 stress 0.1359473 
## Run 72 stress 0.1381111 
## Run 73 stress 0.1338537 
## Run 74 stress 0.1377241 
## Run 75 stress 0.1363944 
## Run 76 stress 0.1365101 
## Run 77 stress 0.1359134 
## Run 78 stress 0.13508 
## Run 79 stress 0.1355873 
## Run 80 stress 0.1344484 
## Run 81 stress 0.1361329 
## Run 82 stress 0.13481 
## Run 83 stress 0.133527 
## ... Procrustes: rmse 0.003306159  max resid 0.0421024 
## Run 84 stress 0.1353904 
## Run 85 stress 0.1335293 
## ... Procrustes: rmse 0.002697941  max resid 0.04198159 
## Run 86 stress 0.1352846 
## Run 87 stress 0.1342735 
## Run 88 stress 0.1361148 
## Run 89 stress 0.136199 
## Run 90 stress 0.1352693 
## Run 91 stress 0.1379358 
## Run 92 stress 0.1370649 
## Run 93 stress 0.138866 
## Run 94 stress 0.1394377 
## Run 95 stress 0.1347766 
## Run 96 stress 0.136658 
## Run 97 stress 0.1354486 
## Run 98 stress 0.1353971 
## Run 99 stress 0.1336481 
## ... Procrustes: rmse 0.005233335  max resid 0.07127385 
## Run 100 stress 0.139415 
## *** No convergence -- monoMDS stopping criteria:
##     45: no. of iterations >= maxit
##     45: stress ratio > sratmax
##     10: scale factor of the gradient < sfgrmin
nmds

Risk Level
nmds <- phylosmith::nmds_phyloseq(lake_hl, "Risk", circle = FALSE)
## Run 0 stress 0.1347132 
## Run 1 stress 0.1335579 
## ... New best solution
## ... Procrustes: rmse 0.007996697  max resid 0.09231088 
## Run 2 stress 0.1369802 
## Run 3 stress 0.1341828 
## Run 4 stress 0.1356765 
## Run 5 stress 0.137204 
## Run 6 stress 0.1365403 
## Run 7 stress 0.1339488 
## ... Procrustes: rmse 0.006071054  max resid 0.0677282 
## Run 8 stress 0.1336667 
## ... Procrustes: rmse 0.003559363  max resid 0.06156406 
## Run 9 stress 0.1357663 
## Run 10 stress 0.1341412 
## Run 11 stress 0.1357562 
## Run 12 stress 0.1367415 
## Run 13 stress 0.1381591 
## Run 14 stress 0.1336885 
## ... Procrustes: rmse 0.006132513  max resid 0.06748152 
## Run 15 stress 0.1403971 
## Run 16 stress 0.134937 
## Run 17 stress 0.1357028 
## Run 18 stress 0.1397281 
## Run 19 stress 0.1349261 
## Run 20 stress 0.1353503 
## Run 21 stress 0.1356312 
## Run 22 stress 0.1338182 
## ... Procrustes: rmse 0.006462101  max resid 0.06730094 
## Run 23 stress 0.1406152 
## Run 24 stress 0.1357804 
## Run 25 stress 0.1365577 
## Run 26 stress 0.1372696 
## Run 27 stress 0.1383708 
## Run 28 stress 0.1336832 
## ... Procrustes: rmse 0.006431503  max resid 0.07097619 
## Run 29 stress 0.1381161 
## Run 30 stress 0.137219 
## Run 31 stress 0.1366326 
## Run 32 stress 0.1357642 
## Run 33 stress 0.1415856 
## Run 34 stress 0.1366006 
## Run 35 stress 0.1345666 
## Run 36 stress 0.136945 
## Run 37 stress 0.1345081 
## Run 38 stress 0.1351334 
## Run 39 stress 0.1356719 
## Run 40 stress 0.1337345 
## ... Procrustes: rmse 0.006699426  max resid 0.07280988 
## Run 41 stress 0.136128 
## Run 42 stress 0.1380229 
## Run 43 stress 0.1387163 
## Run 44 stress 0.1348837 
## Run 45 stress 0.1367534 
## Run 46 stress 0.1382941 
## Run 47 stress 0.138683 
## Run 48 stress 0.13704 
## Run 49 stress 0.1344563 
## Run 50 stress 0.1377817 
## Run 51 stress 0.1382663 
## Run 52 stress 0.1435759 
## Run 53 stress 0.1335256 
## ... New best solution
## ... Procrustes: rmse 0.005705443  max resid 0.07153389 
## Run 54 stress 0.1404829 
## Run 55 stress 0.133986 
## ... Procrustes: rmse 0.006544113  max resid 0.07233169 
## Run 56 stress 0.1358054 
## Run 57 stress 0.1382142 
## Run 58 stress 0.1343471 
## Run 59 stress 0.1361139 
## Run 60 stress 0.1338962 
## ... Procrustes: rmse 0.005221149  max resid 0.06835774 
## Run 61 stress 0.1346626 
## Run 62 stress 0.1349934 
## Run 63 stress 0.1347168 
## Run 64 stress 0.1336938 
## ... Procrustes: rmse 0.004608707  max resid 0.06075052 
## Run 65 stress 0.1363103 
## Run 66 stress 0.1371555 
## Run 67 stress 0.1384781 
## Run 68 stress 0.1357244 
## Run 69 stress 0.1411385 
## Run 70 stress 0.139078 
## Run 71 stress 0.137614 
## Run 72 stress 0.135595 
## Run 73 stress 0.1354544 
## Run 74 stress 0.1366002 
## Run 75 stress 0.1375108 
## Run 76 stress 0.1350606 
## Run 77 stress 0.1377566 
## Run 78 stress 0.135065 
## Run 79 stress 0.1379157 
## Run 80 stress 0.1379647 
## Run 81 stress 0.1370855 
## Run 82 stress 0.1335174 
## ... New best solution
## ... Procrustes: rmse 0.0058717  max resid 0.07216227 
## Run 83 stress 0.1355399 
## Run 84 stress 0.1344544 
## Run 85 stress 0.1365312 
## Run 86 stress 0.135084 
## Run 87 stress 0.1377574 
## Run 88 stress 0.1350904 
## Run 89 stress 0.1347528 
## Run 90 stress 0.1359419 
## Run 91 stress 0.1396423 
## Run 92 stress 0.1380843 
## Run 93 stress 0.1384985 
## Run 94 stress 0.1349535 
## Run 95 stress 0.1374258 
## Run 96 stress 0.1337844 
## ... Procrustes: rmse 0.005277482  max resid 0.07060172 
## Run 97 stress 0.1339579 
## ... Procrustes: rmse 0.005992357  max resid 0.06751374 
## Run 98 stress 0.1340204 
## Run 99 stress 0.1349543 
## Run 100 stress 0.1345398 
## *** No convergence -- monoMDS stopping criteria:
##     58: no. of iterations >= maxit
##     33: stress ratio > sratmax
##      9: scale factor of the gradient < sfgrmin
nmds

tSNE

Lake
phylosmith::tsne_phyloseq(lake_hl, "Location", circle = FALSE) + 
  guides(fill = guide_legend(ncol = 2), override.aes = list(size = 4))

Week
phylosmith::tsne_phyloseq(lake_hl, "Week", circle = FALSE)

Year
phylosmith::tsne_phyloseq(lake_hl, "Year", circle = FALSE)

Risk Level
phylosmith::tsne_phyloseq(lake_hl, "Risk", circle = FALSE)



Schuyler Smith
Ph.D. Student - Bioinformatics and Computational Biology
Iowa State University. Ames, IA.