Examples used in this vignette will use the GlobalPatterns
dataset from phyloseq
.
library(phyloseq)
data(GlobalPatterns)
Performs a library-size normalization on the phyloseq-object
Usage
library_size(phyloseq_obj)
Arguments
Call | Description |
---|---|
phyloseq_obj |
A phyloseq-class object. |
Examples
phyloseq::sample_sums(GlobalPatterns)
## CL3 CC1 SV1 M31Fcsw M11Fcsw M31Plmr M11Plmr F21Plmr
## 864077 1135457 697509 1543451 2076476 718943 433894 186297
## M31Tong M11Tong LMEpi24M SLEpi20M AQC1cm AQC4cm AQC7cm NP2
## 2000402 100187 2117592 1217312 1167748 2357181 1699293 523634
## NP3 NP5 TRRsed1 TRRsed2 TRRsed3 TS28 TS29 Even1
## 1478965 1652754 58688 493126 279704 937466 1211071 1216137
## Even2 Even3
## 971073 1078241
normalized_obj <- library_size(GlobalPatterns)
phyloseq::sample_sums(normalized_obj)
## CL3 CC1 SV1 M31Fcsw M11Fcsw M31Plmr M11Plmr F21Plmr
## 813560 813238 812484 813642 812806 812915 813267 812818
## M31Tong M11Tong LMEpi24M SLEpi20M AQC1cm AQC4cm AQC7cm NP2
## 812618 812874 812751 813366 813325 812674 812123 813593
## NP3 NP5 TRRsed1 TRRsed2 TRRsed3 TS28 TS29 Even1
## 813679 812232 813431 813620 813538 813343 813339 813499
## Even2 Even3
## 813589 813631
Transforms the the otu_table
count data to relative abundance. Relative abundance sets the count sums for each sample to 1, and then assigns each taxa an abundance equal to its proportion on the total sum (very low abundance taxa may ).
Usage
relative_abundance(phyloseq_obj)
Arguments
Call | Description |
---|---|
phyloseq_obj |
A phyloseq-class object that contains otu_table count data. |
Examples
phyloseq::sample_sums(relative_abundance(GlobalPatterns, 10))
## CL3 CC1 SV1 M31Fcsw M11Fcsw M31Plmr M11Plmr F21Plmr
## 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## M31Tong M11Tong LMEpi24M SLEpi20M AQC1cm AQC4cm AQC7cm NP2
## 1.0000000 1.0000000 1.0000000 1.0000000 0.9999999 0.9999999 1.0000000 1.0000000
## NP3 NP5 TRRsed1 TRRsed2 TRRsed3 TS28 TS29 Even1
## 0.9999999 1.0000001 1.0000000 1.0000001 1.0000000 1.0000000 1.0000000 1.0000001
## Even2 Even3
## 1.0000000 1.0000000
Used to identify which entries in the taxa_table are shared among treatment-groups. It will return a vector
of taxa names that are all seen in n
groups.
Usage
common_taxa(phyloseq_obj, treatment = NULL, subset = NULL, n = 'all')
Arguments
Call | Description |
---|---|
phyloseq_obj |
A phyloseq-class object. |
treatment |
Column name as a string , or vector of, in the sample_data . |
subset |
A factor within the treatment . This will remove any samples that to not contain this factor. This can be a vector of multiple factors to subset on. |
n |
Number of treatment groups that need to share the taxa to be considered a common taxa. |
Examples
common_taxa(GlobalPatterns, treatment = 'SampleType',
subset = 'Tongue', n = 'all')[1:35]
## [1] "100071" "100077" "100099" "100171" "100201" "100683" "100730" "100757"
## [9] "100807" "100847" "100937" "100954" "100980" "101000" "101152" "101184"
## [17] "101210" "101215" "101310" "101369" "101411" "101437" "101444" "101464"
## [25] "101503" "101552" "101628" "101632" "101660" "101707" "101731" "101824"
## [33] "101837" "101880" "10189"
Filter taxa in phyloseq-object to only include core taxa
Usage
taxa_core(phyloseq_obj, treatment = NULL, subset = NULL, frequency = 0.5, abundance_threshold = 0.01)
Arguments
Call | Description |
---|---|
phyloseq_obj |
A phyloseq-class object. |
treatment |
Column name as a string , or vector of, in the sample_data . |
subset |
A factor within the treatment . This will remove any samples that to not contain this factor. This can be a vector of multiple factors to subset on. |
frequency |
The proportion of samples the taxa is found in. |
abundance_threshold |
The minimum relative abundance the taxa is found in for each sample. |
Examples The soil_column
data has 18,441 OTUs listed in its taxa_table
.
taxa_core(GlobalPatterns, frequency = 0.2, abundance_threshold = 0.01)
## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 5 taxa and 26 samples ]
## sample_data() Sample Data: [ 26 samples by 7 sample variables ]
## tax_table() Taxonomy Table: [ 5 taxa by 7 taxonomic ranks ]
## phy_tree() Phylogenetic Tree: [ 5 tips and 4 internal nodes ]
Computes the proportion of a taxa classification. This can be done by treatment, sample, or across the dataset.
Usage
taxa_proportions(phyloseq_obj, classification, treatment = NA)
Arguments
Call | Description |
---|---|
phyloseq_obj |
phyloseq_obj |
classification |
Column name as a string or numeric in the tax_table for the prportions to be reported on. |
treatment |
Column name as a string , or vector of, in the sample_data . |
Examples
taxa_proportions(GlobalPatterns, 'Phylum', treatment = "SampleType")
taxa_proportions(GlobalPatterns, 'Phylum', treatment = 'Sample')
taxa_proportions(GlobalPatterns, 'Phylum', treatment = NULL)
Identify which taxa are unique to a specific treatment-group. It will return a list
of vector
s of taxa-names that are only seen in each group.
Usage
unique_taxa(phyloseq_obj, treatment, subset = NULL)
Arguments
Call | Description |
---|---|
phyloseq_obj |
A phyloseq-class object. |
treatment |
Column name as a string , or vector of, in the sample_data . |
subset |
A factor within the treatment . This will remove any samples that to not contain this factor. This can be a vector of multiple factors to subset on. |
Examples
uniques <- unique_taxa(GlobalPatterns, treatment = "SampleType")
data.frame(lapply(uniques, "length<-", max(lengths(uniques))))
Schuyler Smith
Ph.D. Bioinformatics and Computational Biology